Letter to the Editor

A Remark on an Algorithm for Best LD Approximation

Communicated by Oved Shisha

In [1] Karlovitz discusses an algorithm for computing best approximation in the L^{p} norm when p is an even integer $\geqslant 4$. This algorithm is also applicable under the weaker hypothesis, $p \geqslant 2$. In fact, it is a special case of the following descent algorithm for unconstrained optimization.

Let G be a real-valued function on R^{n} which satisfies the following conditions:
(a) $\inf _{x \in R^{\mathrm{n}}} G(x)>-\infty$,
(b) $\lim _{x \rightarrow \infty} G(x)=\infty$,
(c) $G \in C^{2}\left(R^{n}\right)$ and the Hessian matrix $H(x)=\left(\partial^{2} G(x) / \partial x_{i} \partial x_{j}\right)$ has the property that whenever $y^{T} H(x) y=0$ for $x, y \in R^{n}$, then $y=0$. Equivalently, given any $R>0$, there is a $\lambda>0$ such that

$$
\begin{equation*}
\left|y^{T} H(x) y\right| \geqslant \lambda y^{T} y, \quad y \in R^{n}, \quad x^{T} x \leqslant R^{2} . \tag{1}
\end{equation*}
$$

Clearly, any function satisfying (a), (b), and (c) takes on its minimum in R^{n} at unique point z

$$
G(z)=\min _{x \in R^{n}} G(x) .
$$

Let $x_{0} \in R^{n}$, and let β be a nonzero real number. We define two sequences x_{k} and y_{k} in R^{n} as follows. Given x_{k}, define y_{k} as the solution of the equation

$$
\begin{equation*}
\beta \nabla G\left(x_{k}\right)=H\left(x_{k}\right) y_{k}, \quad k=0,1,2, \ldots . \tag{2}
\end{equation*}
$$

Then set $x_{k+1}=x_{k}+\lambda_{k} y_{k}$, where λ_{k} is given by

$$
\begin{equation*}
G\left(x_{k}+\lambda_{k} y_{k}\right)=\min _{-\infty<\lambda<\infty} G\left(x_{k}+\lambda y_{k}\right) . \tag{3}
\end{equation*}
$$

Theorem. Let $G: R^{n} \rightarrow R^{1}$ satisfy (a), (b), and (c). Then the sequences defined above converge; x_{k} converges to z and y_{k} converges to zero.

Proof. Since

$$
\begin{equation*}
G\left(x_{k+1}\right) \leqslant G\left(x_{k}+\lambda y_{k}\right), \quad \lambda \in R^{1} \tag{4}
\end{equation*}
$$

we have $G\left(x_{k+1}\right) \leqslant G\left(x_{k}\right) \leqslant \cdots \leqslant G\left(x_{0}\right)$. Thus, condition (b) implies that there exists an $R>0$ such that $x_{k}^{T} x_{k}<R$. Define $M=\max _{x^{T} x \leqslant R^{2}}(\nabla G(x))^{T} \nabla G(x)$; then from Eq. (2), inequality (1) and the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\lambda y_{k}^{T} y_{k} & \leqslant \beta M^{1 / 2}\left(y_{k}^{T} y_{k}\right)^{1 / 2}, \\
y_{k}^{T} y_{k} & \leqslant \beta^{2} M / \lambda^{2} .
\end{aligned}
$$

Thus, both x_{k} and y_{k} have convergent subsequences. We suppose that they converge to \bar{x} and \bar{y}, respectively. In view of (2) and (4), it follows that $\beta \nabla G(\bar{x})=H(\bar{x}) \bar{y}$ and $\bar{y}^{T} \nabla G(\bar{x})=0$. Hence, we obtain $\bar{y}^{T} H(\bar{x}) \bar{y}=0$, and so, by property (c), $\bar{y}=0$. This implies $\nabla G(\bar{x})=0$. Thus $\bar{x}=z$.

Application. Best approximation in L^{p} for $p \geqslant 2$.
The function to be minimized is

$$
\begin{aligned}
G\left(x_{1}, \ldots, x_{n}\right) & =\int_{T}\left|f(t)-\sum_{i=1}^{n} x_{i} \phi_{i}(t)\right|^{p} d t \\
& =\left\|f-\sum_{i=1}^{n} x_{i} \phi_{i}\right\|_{L^{p}}^{p}
\end{aligned}
$$

If we use the notation in [1],

$$
\|g\|_{L^{2}, W}^{2}=\int_{T} g^{2}(t) W(t) d t
$$

then, for $p \geqslant 2$,

$$
y^{T} H(x) y^{T}=p(p-1)\left\|\sum_{i=1}^{n} y_{i} \phi_{i}\right\|_{L^{2}, W}^{2}
$$

where $W=\left|f-\sum_{i=1}^{n} x_{i} \phi_{i}\right|^{p-2}$.
Let $\beta=p-1, g_{k}=\sum_{i=1}^{n}\left(x_{k}\right)_{i} \phi_{i}$, and $h_{k}=g_{k}+\sum_{i=1}^{n}\left(y_{k}\right)_{i} \phi_{i}$. Then (2) is equivalent to the statement that h_{k} is the best L^{2} approximation to f with respect to the weight $W_{k}=\left|f-g_{k}\right|^{p-2}$, while (4) is equivalent to choosing λ_{k} so as to minimize $\left\|f-g_{k}-\lambda\left(h_{k}-g_{k}\right)\right\|_{L^{p}}$.

This is the algorithm described in [1].

References

1. L. A. Karlovitz, Construction of nearest points in the L^{p}, p even, and L^{∞} norms. I, J. Approximation Theory 3 (1970), 123-127.

IBM T. J. Watson Research Center

Yorktown Heights, New York

